
January, 2005

Advisor Answers

Restoring original data values

VFP 9/8/7/6

Q: I'm using VFP 6 to build an application that so far spans more than
50 forms. At a meeting with users, they requested a "Reset" ability;

they want to click a button on a form and reset all fields to their
original values. This would be easy with database containers and

TABLEREVERT() but we're not using database containers.

I'm looking for a less painful and tedious way of implementing this

than doing something manually with each appropriate control, whether
it is a textbox, edit control or option group.

–Henry Hayden (via Advisor.COM)

A: As you point out, the easiest way to do this is using VFP's buffering
abilities. You don't actually have to use a DBC to take advantage of

buffering (though, prior to VFP 9, a DBC is required for transactions).

Free tables can use both row buffering and table buffering. So one
solution to your problem is to apply table buffering to your tables and

use the TableRevert() function when a user clicks the Reset button.

However, if your application isn't designed to take advantage of

buffering, retro-fitting it may be quite painful. It's possible you'd have
to modify every form to turn buffering on, and change the way you

save form data. However, if all the forms in your application are based
on a form class that centralizes data management, the changes

actually could be quite simple, though of course, you'd have to do
extensive testing to ensure a major change like this doesn't break

anything.

I'll assume that switching to buffering is too difficult in your case and

offer you an alternative. What you need is a way to store the initial
value for each control on a form and a way to restore that value when

the user clicks Reset. This is a case where object-orientation makes

what appears to be a difficult task pretty straightforward. The basic
technique is useful for a wide variety of tasks, not just providing Reset

capability.

The secret is to ask each control to store its own original value. The

place to do this is in your base classes for this project. Add two custom
properties, lSaveValue and uOriginalValue, and two custom methods,

SaveValue and RestoreValue, to each class that handles data. The
lSaveValue property lets you determine whether any instance of the

control saves its value; set it to .T. in the Property Sheet, so that
saving the value is the default. The uOriginalValue property stores the

original value.

For regular controls (like spinners, textboxes, etc.), the code for

SaveValue looks like this:

IF This.lSaveValue
 THIS.uOriginalValue = This.Value
ENDIF

For those controls, the code for RestoreValue reverses the process:

IF This.lSaveValue
 IF PEMSTATUS(THIS, "uOriginalValue", 5)
 This.Value = This.uOriginalValue
 ENDIF
ENDIF

Container controls, like pageframes and grids, require special

handling. You have to drill down into them to store the values of their

contents. Add two methods, SaveValue and RestoreValue. No custom
properties are needed for the container, but for the functionality to

work, the controls in the container must have the SaveValue and
RestoreValue methods. For a pageframe, the SaveValue method looks

like this:

LOCAL nPage, oControl

* Drill down to each page and to each control on the page
FOR nPage = 1 TO This.PageCount
 FOR EACH oControl IN This.Pages[nPage].Objects
 IF PEMSTATUS(oControl, "SaveValue", 5)
 oControl.SaveValue()
 ENDIF
 ENDFOR
ENDFOR

The RestoreValue method for a pageframe is almost identical:

LOCAL nPage, oControl

* Drill down to each page and to each control on the page
FOR nPage = 1 TO This.PageCount
 FOR EACH oControl IN This.Pages[nPage].Objects

 IF PEMSTATUS(oControl, "RestoreValue", 5)
 oControl.RestoreValue()
 ENDIF
 ENDFOR
ENDFOR

At the form level (that is, in your base form class), add methods
SaveAll and RestoreAll. The code for SaveAll calls each control's

SaveValue method, like this:

FOR EACH oControl IN This.Controls
 IF PEMSTATUS(oControl, "SaveValue", 5)
 oControl.SaveValue()
 ENDIF
ENDFOR

The code for RestoreAll is analogous—check each control to make sure

it has the method, then call the method:

FOR EACH oControl IN This.Controls
 IF PEMSTATUS(oControl, "RestoreValue", 5)
 oControl.RestoreValue()
 ENDIF
ENDFOR

The calls to PEMSTATUS() in the SaveAll and RestoreAll methods mean

that any controls on the form that don't offer save and restore
capability are simply skipped and don't crash the form.

Finally, you need to call SaveAll and RestoreAll in the right places.
What are the right places? For RestoreAll, that's easy. Call it from the

Click method of the Reset button. SaveAll needs to be called anytime
you retrieve new data into the form. A likely place to make the call is

in the Refresh method; if you put the call there, issue DODEFAULT()

before calling SaveAll to ensure that the values in the controls are
updated before saving them. You may also need to call SaveAll on the

way into the form.

This month's Professional Resource CD includes BaseReset.VCX, a

class library containing subclasses of CheckBox, ComboBox, EditBox,
ListBox, OptionGroup, PageFrame, Spinner and TextBox that

incorporate the SaveValue and RestoreValue functionality, and a
subclass of Form that includes the SaveAll and RestoreAll methods.

There's also an example form, ResetDemo.SCX, that demonstrates
some of the controls. Be aware that the form edits data in the

Northwind Employees table directly, so changes you make and don't
reset will be saved.

The solution shown here requires you to use subclasses of the VFP

base classes and may force you to change the control classes you're
using in some forms. Another solution is to build the save and restore

capability into a separate class and use BindEvents() to connect that
ability to existing forms. This is especially useful if your forms use the

VFP base classes (which is a bad idea, but you may be stuck with it).
The BaseReset class library on this month's PRD also includes

cusResetter and cusControlReset, a pair of classes that set up save
and restore functionality to make it available for binding, plus

ResetDemo2.SCX, a form that uses those classes, and RunForm, a
program that runs the form and performs the binding.

While the code here replaces a built-in ability, the strategy of asking a
control to store information about itself is one that has wide

applicability. Anytime you can store data in a control itself, you avoid
the need to set up an outside storage mechanism.

–Tamar

